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We present a formalism for the Bloch spectral function within the framework of the recently devised
Korringa-Kohn-Rostocker nonlocal coherent potential approximation �KKR-NLCPA�. This is applicable to the
study of the effects of short-range order �SRO� on the electronic structure of disordered systems. We show how
a coarse-grained average of the spectral function over regions in reciprocal space results directly from the
KKR-NLCPA. By considering fluctuations about the NLCPA effective medium we find an expression for the
spectral function itself. The results of explicit calculations on the bcc Cu50Zn50 and the fcc Cu77Ni23 solid
solutions are presented in order to examine the effects of SRO upon their electronic structure and to illustrate
the validity of our formalism.
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I. INTRODUCTION

Over the past 30 years, effective medium theories have
proven to be of great utility in the study of substitutionally
disordered crystals1,2 such as metallic alloys. In contrast to
conventional electronic structure theory techniques, whereby
one has to calculate the electronic structure of each configu-
ration and then average over these configurations to obtain
physical properties, the effective medium is constructed so as
to describe the ensemble average over all alloy configura-
tions. As a translationally invariant quantity, it permits the
familiar arsenal of techniques from the analysis of crystalline
systems such as lattice Fourier transforms to be applied with-
out recourse to the use of computationally expensive super-
cells. The natural description of the effective medium is pro-
vided by multiple scattering theory; effective scattering
amplitudes t̂ are located on each lattice site and structure

constants Ĝ then describe the propagation of an electron
through the configurationally averaged lattice, whilst the me-
dium itself may be determined via a physically reasonable
and intuitive self-consistency condition.

One well-known means of determining the effective me-
dium is provided by the the so-called coherent potential ap-
proximation �CPA�,3 which represents the state-of-the-art
method for describing the electronic structure of disordered
metals.4,5 In conjunction with density functional theory
�DFT�6,7 and the Korringa-Kohn-Rostocker �KKR� method
of band theory,8–10 it is capable of providing an accurate ab
initio description of such systems, as a long history of suc-
cessful applications testifies.2,11–13 At its heart, though, the
KKR-CPA remains a single-site mean-field theory,14 and it is
thus incapable of dealing with short-range order �SRO� ef-
fects, viz. the fluctuations in the crystal potential arising from
the disorder in the environment of each site. It therefore ex-

plicitly ignores the role that SRO may play in the physics of
such systems. Such statistical fluctuations are responsible for
band tailing and sharp structure in densities of states;1 the
neglect of them yields k-independent momentum-state life-
times. A single-site theory is further incapable of rigorously
treating transport properties and the localization of states.1

The effects of SRO upon the electronic structure of disor-
dered alloys have been examined by Mookerjee and
Prasad,15–17 using a TB-LMTO �tight-binding linear muffin-
tin orbital� method18 in conjunction with an augmented space
formalism19,20 and real space recursion method,21 whilst
Saha et al.22 have obtained spectral functions within the
same framework. However, it is useful to be able to examine
such effects within a computationally tractable extension of
the KKR-CPA.

These considerations have motivated the recent work of
Rowlands et al.,23–25 along with Biava et al.26 References 23
and 24 formulate and illustrate a successful method incorpo-
rating the effects of SRO within the framework of KKR-CPA
theory, whilst implementation for realistic systems is de-
scribed in Refs. 25 and 26. This nonlocal CPA �NLCPA�
theory is based upon reciprocal space coarse-graining ideas
introduced by Jarrell and Krishnamurthy27 originating from
the dynamical cluster approximation �DCA�.28–30 The
KKR-NLCPA24,25 introduces an effective �translationally in-
variant� disorder term �G which represents an effective
propagator that accounts for all nonlocal scattering correla-
tions on the electronic propagation due to disorder configu-
rations and modifies the structure constants accordingly. By
coarse-graining reciprocal space, one naturally introduces
real space periodically repeating clusters. As such, the
NLCPA maps an effective lattice problem to that of an im-
purity cluster embedded in a self-consistently determined ef-
fective medium, and thus yields a cluster generalization of
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the KKR-CPA that includes nonlocal correlations up to the
range of the cluster size. Unlike other cluster approaches,
such as the molecular CPA �MCPA�31 it is fully translation-
ally invariant, that is, the effective medium has the site-to-
site translational invariance of the underlying lattice. It is
also computationally tractable, largely on account of the re-
ciprocal space coarse-graining procedure employed.

Our purpose in this paper is to focus on the calculation of
observable quantities using the KKR-NLCPA. Rowlands et
al.23,24 demonstrated explicitly how to obtain site-diagonal
observable properties such as the total and component den-
sities of states, whilst in Ref. 25, the same authors showed
that such quantities could be calculated for realistic systems
such as the CuZn solid solution examined therein. However,
as we show here, it can also be used to calculate so-called
non-site-diagonal properties such as the Bloch spectral func-
tion.

For a perfectly periodic solid, the spectral function can be
written

Ab�E,k� = �
n

��E − En�k�� �1�

where the En�k� are band structure eigenvalues. As can be
seen, for a given k point, this will consist of infinitesimally
sharp peaks at these corresponding band energies, and will
be zero for all other energies, whilst integrating over the
Brillouin zone yields the density of states.

The effects of disorder will be to broaden these peaks; the
half-width of which is related to the lifetime of an electron in
a state k. Experimentally, these lifetimes can be determined
by positron annihilation experiments,32 or through angle-
resolved photoemission measurements.33,34 As a density of
states in reciprocal space, the Bloch spectral function yields
valuable information on the Fermi surface of disordered al-
loys; calculating this quantity within the NLCPA therefore
allows the effects of SRO on, for example, the Fermi surface
topology to be investigated.

For a disordered system the spectral function is connected
to the nonsite diagonal, configuration averaged Green’s func-
tion, �G�E ,r ,r���, through the Fourier transform

Ab�E,k� = − �1/��Im �
j
�

�i

dri�G�E,ri,ri + R j��e−ik·Rj

�2�

where the R j denote sites on the lattice, the sum is over all
sites within the lattice under consideration, and the integral is
taken over the volume of the unit cell surrounding site i.

To this end, we discuss the nonsite diagonal configura-
tionally averaged Green’s function, and, taking due care with
the lattice Fourier transform involved, use this to derive an
explicit expression for the Bloch spectral function. The paper
is structured as follows: Sec. II provides a brief overview of
the KKR-NLCPA method, and the coarse-graining procedure
and demonstrates how this naturally leads to an expression
for an average of the spectral function over a reciprocal
space tile; in Sec. III we describe how to calculate the spec-
tral function at selected reciprocal space points; in Sec. IV
we evaluate this quantity to investigate the effects of SRO

electronic structure of the bcc Cu50Zn50 alloy. In Sec. V we
discuss how to obtain the spectral function for any point in
the Brillouin zone, and illustrate this by examining the ef-
fects of SRO upon the electronic structure of the fcc
Cu77Ni23 alloy. In Sec. VI we present our conclusions.

II. KKR-NLCPA: AN OVERVIEW

The first step in the KKR-NLCPA is to define the NLCPA
effective medium.24,25 The propagation of an electron
through this medium is described by the scattering path ma-

trix ��̂ ij, which should be determined such that it describes the
motion of an electron on the average exactly. We define it
through

�̂� ij = �̂��ij + �
k�i

t̂�Ĝ� �Rik��̂�kj �3�

where a circumflex symbol denotes an effective medium
quantity, and an underscore denotes a matrix in angular mo-
mentum and cluster space. The effective local t matrices �i.e.,

the scattering amplitudes� are defined t�̂, and the effective
propagator is given by

Ĝ� �Rij� = G� �Rij� + �Ĝ�Rij� , �4�

where we have the usual free-space KKR structure constants
G� �Rij� that account for the lattice structure, and have intro-

duced the translationally invariant screening term, �Ĝ�Rij�.
This modifies the free-space KKR structure constants, and as
explained by Rowlands et al.,24,25 accounts, in an averaged
manner, for all nonlocal scattering correlations due to the
disorder configurations. Invoking translational invariance al-

lows us to write the scattering path matrix ��̂ ij as follows:

�̂� ij =
1

�BZ
�

�BZ

dk�t̂�−1 − G� �k� − �Ĝ�k��−1eik·�Ri−Rj�. �5�

It is not feasible to solve this problem exactly; the essen-
tial idea, influenced by the work of Jarrell and Krishnamur-
thy on the dynamical cluster approximation,27 is to consis-
tently coarse grain in both real and reciprocal space. The
coarse-graining algorithm must preserve the translational in-
variance and point group symmetry of the underlying lattice,
and a detailed discussion of the construction employed in
this work has been provided by Rowlands et al.24,25 The
coarse graining amounts to finding “cluster momenta” and
Nc real-space cluster sites satisfying

1

Nc
�
Kn

eiKn·�RI−RJ� = �IJ, �6�

where the 	Kn
 are at the centers of a set of Nc reciprocal
space patches or tiles that coarse grain the first Brillouin zone
of the lattice, and the 	RI
 define a real-space cluster of Nc

sites surrounded by a tile similarly preserving the point-
group symmetry, which may be periodically repeated to yield
the original lattice.

Having determined the cluster momenta and real space
sites consistent with Eq. �6�, it is now possible to determine
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the effective medium. This may be achieved by approximat-

ing the �Ĝ�k� within each of the Nc tiles in reciprocal space

by the Nc values 	�Ĝ�Kn�
, each of which is defined to be the

average of �Ĝ�k� over the tile centered at Kn. The coarse-
grained averaged effective medium path operator may be
represented by

�̂��Kn� =
Nc

�BZ
�

�Kn

dk̃�t̂�−1 − G� �Kn + k̃� − �Ĝ�Kn��−1 �7�

which is simple to calculate, as �Ĝ is taken to be constant

within a given tile with volume �Kn
. Here, k̃ is a reciprocal

space point located within the NLCPA reciprocal space tile
centered upon Kn, and a point in reciprocal space k may
accordingly be written

k = Kn + k̃ . �8�

These integrals have the same computational cost as a
standard BZ integration; it is this that renders the NLCPA
computationally inexpensive, in marked contrast to earlier
cluster theories such as MCPA.1,24 Defining Fourier trans-
forms through

�̂� IJ = 1/Nc�
Kn

�̂��Kn�eiKn·�RI−RJ� �9�

and

�̂��Kn� = �
J

�̂� IJe−iKn·�RI−RJ� �10�

the corresponding expression for the path scattering operator
between cluster sites is

�̂� IJ =
1

�BZ
�
Kn
��

�Kn

dk̃�t̂�−1 − G� �Kn + k̃� − �Ĝ�Kn��−1�
�eiKn·�RI−RJ�. �11�

Nyquist’s sampling theorem35 implies that coarse-graining
the effective structure constant corrections has the effect of
reducing their range in real space. Using Eq. �6� we can thus
write

�ĜIJ =
1

Nc
�
Kn

�Ĝ�Kn�eiKn·�RI−RJ�, �12�

�Ĝ�Kn� = �
J�I

�ĜIJe−iKn·�RI−RJ� �13�

from which it is apparent that �Ĝ�Rij� remains translation-
ally invariant and only dependent upon the distance between
sites I and J. It is therefore independent of which site in the
lattice is chosen to be site I. Note further that it is now
restricted to act within the NLCPA cluster. It is straightfor-
ward to now extend the CPA arguments, as in Refs. 23 and
24, and embed an impurity cluster �chosen so as to satisfy
the above requirements� into the effective medium. By con-
sidering all possible paths starting and ending on the impu-
rity cluster sites and demanding that, on the average, there is

no excess scattering off the embedded cluster, which may be
expressed as

�
�

P������
IJ = �̂� IJ �14�

the effective medium may be determined. Here, P��� is the
probability of configuration � occurring, and for a binary
alloy, the sum is over the 2Nc possible impurity configura-
tions, and ���

IJ is the scattering path matrix from cluster site I
to J, for a given cluster configuration �. The effective me-
dium may therefore be determined through a self-consistent
solution of Eqs. �11� and �14� We may include SRO by ap-
propriately weighting configurations. A detailed discussion
of the self-consistent algorithm used in this work is provided
in Refs. 23 and 24

A. Calculation of observables

The calculation of physical observables proceeds from de-
termination of the configuration average of the Green’s func-
tion. In general, the multiple-scattering Green’s function may
be written �Ref. 36�

G�E,ri,r j�� = �
LL�

ZL
i �E,ri��LL�

ij ZL�
j �E,r j��

− �
L

ZL
i �E,ri�JL

i �E,ri���ij , �15�

where the L�=l ,m� is an angular momentum label, and ri�r j�
lies within the unit cell centered upon site i�j�. The ZL and JL

denote the regular and irregular solutions to the Schrödinger
equation, respectively. The site-diagonal Green’s function,
configurationally averaged such that the potential at site I is
fixed, is given by

�G�E,rI,rI���I = �
�

P��
I��
L,L�

ZL
I �E,rI���LL�

II �I;�ZL�
I �E,rI��

− �LL��
L

ZL
I �E,rI�JL�

I �E,rI�� . �16�

Here, ��LL�
II �I;� is the path scattering operator for paths

starting and ending at site I, conditionally averaged such that
the potential on site I is known, and the rest of the sites are
described by configuration �. P�� 
 I� is then the probability
of configuration � occurring, given the potential at site I.
Averaging over the occupants of this site then yields

�G�E,rI,rI��� = �
�

P��
I���
�

P��
���
L,L�

ZL
I �E,rI�

� ��LL�
II �I;�ZL�

I �E,rI��

− �LL��
L

ZL
I �E,rI�JL�

I �E,rI��� , �17�

where the index � may be either of type A or B for a binary
alloy AcB1−c, and P�� 
 I� is the probability that site I is oc-
cupied by an atom of type �.

Translational invariance implies that any site may be cho-
sen to be site I, and accordingly, the density of states is given
by
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	�E� =
− 1

�
Im �

�I

�G�E,rI,rI��drI, �18�

where the integral is taken over �I, the volume of site I.

B. Coarse grained Bloch spectral function

We now focus attention on the nonsite diagonal configu-
ration averaged Green’s function for sites I ,J within the
same NLCPA cluster, i.e.,

�G�E,rI,rJ���IJ = �
�

P��
IJ��
L,L�

ZL
I �E,rI�

� ��LL�
IJ �I,J;�ZL�

J �E,rJ��

− �IJ�
L

ZL
I �E,rI�JL

J�E,rJ�� �19�

which is a straightforward extension of the site-diagonal ex-
pression given by Rowlands et al.24 Analogous to the site-
diagonal case, ��LL�

IJ �I,J;� is the path scattering operator from
site I to site J, conditionally averaged such that the occupan-
cies of these two sites are known. P�� 
 IJ� is then the prob-
ability that the remainder of the cluster sites are occupied in
accordance with configuration �, given the specification of
the occupancies of sites I and J.

Averaging over all possible occupancies of the two sites
then yields an expression for �G�E ,rI ,rJ���:

�G�E,rI,rJ��� = �
�


P��,

IJ���
�

P��
�
��
L,L�

ZL
��E,rI�

���LL�
IJ ��,
;�ZL�


 �E,rJ��

− �IJ��
�
L

ZL
��E,rI�JL


�E,rJ��� , �20�

where �
 may take the values AA, AB, BA, BB, for a binary
alloy. Here, the path scattering operator may be written as

��LL�
IJ ��,
;� = ��̂�−1 + t�−1��,
;�� − t̂�−1 + �Ĝ�I,J,L,L�

−1 �21�

with t�−1�� ,
 ;�� denoting a set of scatterers comprising the
cluster such that for configuration �, site I is occupied by an
� atom and site J by a 
 atom. This expression for the
averaged Green’s function is valid for all sites separated by
distances less than the extent of the cluster.

If we now coarse grain the KKR-NLCPA Green’s function
consistently with Eq. �6�, i.e., Fourier transform this quantity
at the cluster momenta, we obtain the following:

Āb�E,Kn� = − �1/Nc��Im �
J
��

�


P��

IJ�

��
�

P��
�
��
LL�

�FLL�
�
 ��LL�

IJ ��
;�

− �LL���
F̄LL�
� ��e−iKn·�RI−RJ�, �22�

which is a well-defined quantity within the NLCPA. The ma-
trix F� �
 is given by

FLL�
�
 = �

�I

ZL
��E,rI�ZL�


 �E,rI�drI, �23�

and the matrix F̄�
� is given by

F̄LL�
� = �

�I

ZL
��E,rI�JL�

� �E,rI�drI, �24�

where the integrals in each case are taken over the volume of
site I. In the expression for F� �
, we have implicitly used the
periodicity of the lattice to permit us to integrate over the
volume of site I.

As can be seen, this quantity naturally arises from the
KKR-NLCPA, and corresponds to a coarse-grained average
of the Bloch spectral function over the extent of a reciprocal
space tile centered on Kn, i.e.,

Āb�E,Kn� =
Nc

N
�
k̃

Ab�E,Kn + k̃� , �25�

where the sum is over k̃ lying within the tile centered at Kn.
It is easy to see that integrating this over the Brillouin

zone satisfies the sum rule

	�E� = 1/Nc�
Kn

Āb�E,Kn� �26�

where 	�E� is the density of states.
In Figs. 1 and 2, such coarse-grained averages of the spec-

tral function are presented for bcc CuZn where Nc=2. These
results indicate that the coarse-grained spectral function al-
lows us to glean further information on the electronic states;
for example, it can be used to identify the regions of recip-
rocal space responsible for changes observed in the density
of states. As an illustration, in Fig. 2, we can see that the
shoulder in the density of states at around 0.4 Ry is not only

FIG. 1. Coarse-grain averaged spectral fuanction over the
NLCPA tile centered at Brillouin zone origin.
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enhanced by the clustering tendency, but is also due to states
in the reciprocal space tile centered around the point �0,0,1�,
i.e., towards the edge of the Brillouin zone. Similarly, from
Fig. 1, it can be seen that the Cu states responsible for the
peaks in the region 0.4–0.6 Ry are located within the tile
centered upon the zone center.

It is apparent that in this Nc=2 case that the coarse-
grained spectral function yields little information about the
detailed distribution of the electronic states in reciprocal
space. This is to be expected, given its nature as an average
over the NLCPA tiles. As such, it provides a “pixellation” of
the spectral function across the Brillouin zone, with each tile
being a pixel. To improve the resolution of this pixellation
demands that the size of the pixels be reduced. This is
equivalent to introducing larger clusters into our calculation.
Of course, as the limit of an infinite cluster is approached, an
exact pixellation is obtained. Given that the number of clus-
ter configurations for a binary alloy is 2Nc, one obvious
method to alleviate some computation is to importance
sample the configurational phase space. This could take the
form of a Monte Carlo scheme with energetic weightings
based upon some simple Hamiltonian such as a Bragg-
William model. Work is in progress on this development.

III. RECIPROCAL SPACE RESOLUTION

Whilst the information provided by the coarse-grained
spectral function is useful, it is desirable to be able to obtain
a finer resolution in reciprocal space, i.e., to be able to cal-
culate a spectral function at specific K points. To proceed,
we note that the Bloch spectral function may be connected to
the nonsite diagonal configuration averaged Green’s function
through Eq. �2�, where we must sum over all lattice sites in
carrying out this Fourier transform. We stress here that this is
an important point; simply restricting the sum to cluster sites
recovers the coarse grained quantity considered in the previ-
ous section. We must now begin to consider in some detail
how to carry out this Fourier transform.

A. Configurationally averaged Green’s function

The first issue to address is the determination of the con-
figuration averaged Green’s function between sites separated

by a distance greater than the extent of the cluster. The
Green’s function may be readily written as

G�E,rI,rJ�
� � = �

L,L�

ZL
I �E,rI��LL�

IJ� ZL
J��E,rJ�

� � , �27�

where now, sites I and J� reside in different clusters �a nota-
tion that we use throughout in this work�. Averaging this
expression allows us to write

�G�E,rI,rJ�
� �� = �

�

P��
I��
��

P���
J���
�

P��
���
��

P���
���

��
L,L�

ZL
��E,rI���LL�

IJ� ��;�:��;��ZL�
���E,rJ�

� � , �28�

where ��LL�
IJ� ��;�:��;�� is the path scattering operator from site I

to site J�, partially averaged such that I resides within a
cluster with configuration �, occupied by atom � and J�
resides within a cluster with configuration ��, occupied by
atom ��, i.e., it is noncluster diagonal quantity describing
propagation from a site I in a cluster to a site J� in a different
cluster. The NLCPA does not provide a prescription for the
calculation of this quantity, and therefore additional assump-
tions are required. As shown in the Appendix, this average
can be carried out by considering fluctuations about the ef-
fective medium, yielding the result �where we have sup-
pressed the angular momentum dependence for the sake of
clarity�

��IJ���;�:��;�� = �
J,I�

DIJ
†�;��̂JI�DI�J�

��;�� �29�

where the double sum is taken over cluster sites. Here, the
matrix D� is the inverse of the matrix M� , which is given by

MIJ
�;� = �IJ + �

K

�„t−1��,�� − t̂−1
…�IK + �Ĝ�RIK���̂KJ,

�30�

where t−1�� ,�� denotes the scattering matrix for a cluster of
configuration �, with an atom of type � on the site I. Equa-
tion �29� may be seen as the NLCPA extension of the re-
stricted averages used by Faulkner and Stocks,36 and the sum
over K is taken over NLCPA cluster sites.

B. Lattice Fourier transform of Green’s function

We must now Fourier transform the ensemble averaged
Green’s function. Carrying out this Fourier transform is the
KKR-NLCPA extension of Faulkner and Stocks’ result for
the KKR-CPA.36 The NLCPA naturally yields well-defined
quantities at the cluster momenta Kn; it is accordingly
straightforward to calculate a well-defined spectral function
at these reciprocal space points.

For convenience, it is possible to split the Fourier trans-
form into two contributions: one from sites that lie within the
same cluster as our reference site I; and a second contribu-
tion from those sites that lie outside the cluster. We thus
write

FIG. 2. Coarse-grain averaged spectral function over the
NLCPA tile centered at �0,0,1�.

NONSITE DIAGONAL PROPERTIES FROM THE¼ PHYSICAL REVIEW B 73, 205109 �2006�

205109-5



Ab�E,Kn� = − �1/Nc��Im��
J
��

�


P��

IJ��
�

P��
�
��
LL�

�FLL�
�
 ��LL�

IJ ��
;� − �LL���
F̄LL�
� ��e−iKn·�RI−RJ�

− �
J

�
�

�



P��
I�P�

J��
�,��

P��
��P���

��
LL�

FLL�
�
 ��LL�

IJ ��;�:
;��e
−iKn·�RI−RJ�

+ �
j

�
�

�



P��
I�P�

j��
�,��

P��
��P���

��
LL�

FLL�
�
 ��LL�

Ij ��;�:
;��e
−iKn·�RI−Rj�� , �31�

where the symbols have their usual meanings, and Nc is the number of sites in a cluster. In this expression, the first term is that
arising from sites located within the same cluster as the reference site and is equivalent to our coarse-grained Bloch spectral

function Āb�E ,Kn�. We sum over all cluster sites. In our third term, the sum over j is to be taken over all sites in the lattice.
The second term removes the double counting of the sites within the cluster arising from the sum over all sites j.

At this stage we choose to express �̂Ij in terms of its Fourier transform, allowing us to write the third term as follows:

�
�


�
j

P��
I�P�

j��
�

P��
���
��

P���

��
LL�

FLL�
�
 �

J1I�
�DIJ1

†�;� � 1/�BZ�
BZ

�̂�k��eik�·�RJ1
−RI��dk�DI�j


;���
LL�

e−iKn·�RI−Rj�, �32�

where we have used Eq. �29� to express ��Ij�, and the integral is taken over the entire Brillouin zone. We should note too that
the sum over cluster sites I� is taken to be over a NLCPA cluster about the site j �i.e., site j is at the origin of such a cluster�,
whilst that over cluster sites J1 is taken to be over a NLCPA cluster with site I at the origin.

We can carry out the Fourier transform by writing

RJ1
= RI + RJ2

, �33�

where RJ2
denotes the position of a cluster site in a NLCPA cluster about site I at the cluster origin, and

RI� = R j + RI1�
�34�

where, similarly, RI1�
denotes the position of a cluster site in a NLCPA cluster about site j at the cluster origin.

Using this, we can write the third term as

�
�


�
j

P��
I�P�

j��
�

P��
���
��

P���

��
LL�

FLL�
�
 �

J1I�
�DIJ1

†�;� � 1/�BZ�
BZ

�̂�k��eik�·�RI+RJ2
−Rj−RI1�

�dk�DI�j

;���

LL�

e−iKn·�RI−Rj�,

�35�

which, allows us to introduce a delta function using

1/N�
j

ei�k−Kn�·�RI−Rj� = ��k − Kn� . �36�

It is crucial in carrying out this step to note that the quan-
tity in Eq. �32� is an ensemble averaged quantity, and as
such, it is translationally invariant. We may thus note that the
matrix D is therefore independent of the index j �this is
equivalent to stating that the NLCPA is set up such that only
the difference between sites I� and j is important, rather than
the choice of origin j� and we may thus choose to relabel this
origin as I.

We can now write this term as

�
�


P��
I�P�

I��
�

�
��

P��
��P���

�

��
LL�

FLL�
�
 �

I1,J1

„DI,I1

†�;��̂�Kn;0�eiKn·�RI1
−RJ1

�DJ1,I

;��

…LL�
, �37�

where the �̂�Kn ; k̃� is defined through

�̂�Kn;k̃� = �t̂−1 − G�Kn + k̃� − �Ĝ�Kn��−1. �38�

Note that this is distinct from the coarse-grained average
of the path scattering operator over a reciprocal space tile
centered at the point Kn, �̂�Kn�. Instead, the quantity

�̂�Kn ; k̃� is the path scattering operator at the reciprocal

space point k=Kn+ k̃, where k̃ lies within a NLCPA tile
centered upon Kn. It is related to the real space path scatter-
ing operator �̂Ij through

�̂Ij = Nc/�BZ�
Kn

�
�Kn

dk̃�̂�Kn;k̃�ei�Kn+k̃�·�RI−Rj�, �39�

where the integral is taken over the NLCPA tile about Kn.
If we now substitute this in Eq. �31�, we obtain the spec-

tral function given by
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Ab�E,Kn� = − �1/Nc��Im��
J
��

�

�
�

P��

IJ�P��
�
��
LL�

�FLL�
�
 ��LL�

IJ ��
;� − �LL���
F̄LL�
� ��e−iKn·�RI−RJ�

− �
J

�
�


�
�,��

P��
I�P�

J�P��
��P���

��
LL�

FLL�
�
 ��

J1,I2

DIJ1

†�;��̂J1I2DI2J

;���

LL�

e−iKn·�RI−RJ�

+ �
�


�
�,��

P��
I�P�

I�P��
��P���

��
LL�

FLL�
�
 ��

J1I2

DIJ1

†�;��̂�Kn;0�eiKn·�RJ1
−RI2

�DI2I

;���

LL�
� . �40�

Before presenting the results of calculations with this ex-
pression, it is worth discussing some of its features. The
expression is similar to that obtained by Faulkner and Stocks
for the CPA,36 and represents the NLCPA generalization of
their single-site result. For the special case of Nc=1, the
spectral function in Eq. �40� reduces to the CPA spectral
function, as required.

IV. RESULTS

A. CuZn

In order to examine the validity of our formalism, we
present the results of calculations of the spectral function at
the NLCPA cluster momenta for the bcc Cu50Zn50 solid so-
lution, with lattice constant 2.86 Å. The Cu and Zn potentials
in these calculations originate from self-consistent field
KKR-CPA calculations,37,38 the Brillouin zone integrals are
carried out using the adaptive quadrature method,39 and the
energy contour has a 1 mRy imaginary part.

CuZn is an archetypal split-band system; that is, the en-
ergies of the Cu and Zn d bands are very different. In Fig. 3,
the spectral function at the Brillouin zone center for an or-
dered CuZn solid solution is presented. The split-bands can
clearly be observed, with the low energy peaks originating
from the Zn sites, and the high energy features corresponding
to the Cu sites. For the pure bcc Cu and Zn systems with the
same lattice constant we present the zone center spectral

functions in Fig. 4. It is worth noting that ordering is ener-
getically preferred for CuZn in the bcc solid solution, and
correspondingly, it can be seen that the spectral features in
the ordered calculation have been shifted to slightly lower
energies with respect to the features present in the pure cal-
culation.

In order to demonstrate the effects of disorder upon the
spectral function, we present in Fig. 5 the results of CPA and
NLCPA calculations. It is immediately apparent that disor-
dering leads to a broadening and smoothing of the spectral
features, which is as expected. In common with the previous
work of Rowlands et al., the two-site NLCPA cluster used
leads to small nonlocal corrections �of the order of
1 state/atom/Ry in the DOS� and hence there is very little
difference in the spectral function compared to the CPA re-
sult. The differences that do occur do so within the d bands,
again, as expected.

B. Short range order

One of the major motivations for developing the NLCPA
is that it allows the effects of short range order �SRO� upon
the electronic structure of disordered alloys to be investi-
gated upon an ab initio basis. This is in contrast to single-site
theories such as the CPA. SRO may be incorporated by suit-
ably weighting the cluster configuration probability distribu-
tion. In this work, we use a nearest-neighbor Warren-Cowley
parameter �,40 and define our probabilities to be

FIG. 3. Spectral function for ordered CuZn solid solution at

zone center, Kn= �0,0 ,0�, k̃= �0,0 ,0�.
FIG. 4. Spectral function for pure Cu and Zn at zone center,

Kn= �0,0 ,0�, k̃= �0,0 ,0�.
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P�CuCu� = P�Cu�2 + � ,

P�ZnZn� = P�Zn�2 + � ,

P�CuZn� = P�Cu�P�Zn� − � ,

P�ZnCu� = P�Zn�P�Cu� − � . �41�

As P�Cu�= P�Zn�=0.5 for the binary solid solution in this
work, the parameter � may range between values of −0.25
and 0.25, with the former corresponding to ideal ordering,
and the latter corresponding to ideal clustering. Complete
randomness occurs when �=0.

In Fig. 6, the effects of SRO upon the spectral function at
the Brillouin zone center �Kn= �0,0 ,0��, i.e., the � point, are
shown. Given that unlike pairs of atoms are not allowed, the
results for �=0.25 tend towards those of the pure state, with
the spectral features becoming more distinct and sharper, as
expected. In contrast, the �=−0.25 case results in the low
energy features originating from the Zn states merging into
one peak. This is a quite marked manifestation of the effects

of SRO upon the spectral function, and potentially offers the
opportunity of experimentalists observing such effects via
techniques such as photoemission experiments.33,34 Note also
that the high energy peaks are shifted to lower energies com-
pared to the CPA result, which is consistent with the ten-
dency of CuZn solid solutions to energetically favor order-
ing. Of course, by choosing �=−0.25 we are encouraging the
solution to order.

Figure 7 illustrates the effects of disorder and SRO upon
the CuZn spectral function at the point Kn= �0,0 ,1�, i.e., at
the edge of the Brillouin zone �the H point�. Again, it can be
seen that the result of disorder is to broaden the spectral
features present; indeed, the spectral fature in the region of
0.4 Ry is almost entirely smeared out. As at the zone center,
the NLCPA result in the absence of SRO is very similar to
that of the CPA. Ideal clustering results in the spectral fea-
tures increasing in definition. It is interesting to note that this
also involves a marked increase in the separation of the
higher energy Cu peaks, with the spectral feature at 0.4 Ry
being shifted down in energy. This shift is accompanied by
an increase in spectral weight. Conversely, for the ideal or-
dering case, the separation of the peaks decreases; again, the
effect is most marked for the Cu peaks. This band narrowing
can be understood by considering the nature of the split-band
regime: physically, this corresponds to electrons propagating
more easily between like sites than unlike sites; by ordering
the solution, and thus decreasing the overlap between like
sites, the bands will accordingly narrow. Note that this is
consistent with the increase in band dispersion observed
upon clustering.

V. SPECTRAL FUNCTION AT ARBITRARY RECIPROCAL
SPACE POINTS

As noted previously, the formalism developed thus far

allows a spectral function at the cluster momenta, Kn �k̃
=0�, to be calculated, as all the quantities entering the calcu-
lation are well-defined at these reciprocal space points. This
lends itself naturally then to “energy scans,” whereby one
calculates the spectral function for a range of energies at

FIG. 5. Spectral function for disordered CuZn solid solution at
zone center for both CPA and two-site NLCPA calculations.

FIG. 6. Spectral function for disordered CuZn solid solution at
zone center; effects of SRO.

FIG. 7. Spectral function for disordered CuZn solid solution at
�0, 0, 1�; effects of SRO are also indicated.
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these fixed k points. In practice, however, one often wishes
to calculate the spectral function along given lines in recip-
rocal space for a particular energy. Such calculations are par-
ticularly useful, for example, in examining the Fermi surface
topology of a system.32

In order to understand how to obtain a spectral function at
an arbitrary point k, we need to consider how to deal with
the three terms in Eq. �40�. The first two terms are straight-
forward to deal with: they are cluster diagonal quantities,
and therefore, within the NLCPA, remain constant
for all values of k within a given tile centered on Kn. They
are specified therefore at these cluster momenta Kn

and accordingly remain unaltered. The third term has the
form of a product of three Fourier transforms, i.e.,

�A†�Kn ,rI��̂�Kn ;0�A�Kn ,rI�drI, where we have defined the
matrix A� as

AIJ
�;��Kn,rI� = �

J
�
�

�
�

P��
I�P��
��Z��E,rI�DIJ
�;�eiKn·RJ

�42�

of which the matrix A� and its transpose are cluster diagonal.
Similarly, these quantities are specified at the cluster mo-

menta in reciprocal space. Conversely, �̂�Kn ; k̃� is not cluster
diagonal; and can vary from point to point in reciprocal
space, the reciprocal space dependence arises from the free
space structure constants �see Eq. �38��. Following these ar-
guments, the spectral function at an arbitrary k point is given
by the expression

Ab�E,k� = − �1/Nc��Im��
J
��

�

�
�

P��

IJ�P��
�
��
LL�

�FLL�
�
 ��LL�

IJ ��
;� − �LL���
F̄LL�
� ��e−iKn·�RI−RJ�

− �
J

�
�


�
�,��

P��
I�P�

J�P��
��P���

��
LL�

FLL�
�
 ��

J1I2

DIJ1

†�;��̂J1I2DI2J

;���

LL�

e−iKn·�RI−RJ�

+ �
�


�
�,��

P��
I�P�

I�P��
��P���

��
LL�

FLL�
�
 ��

J1I2

DIJ1

†�;��̂�Kn;k̃�eiKn·�RJ1
−RI2

�DI2I

;���

LL�
� . �43�

This yields a fully causal spectral function at any recipro-
cal space point, and represents the natural NLCPA extension
of the KKR-CPA spectral function. To illustrate this, recall
that in the CPA, the first two terms provide a constant back-
ground across the Brillouin zone, the first of which is simply
the density of states; the remaining k-dependent term is then
responsible for the fluctuations in the electronic structure in
reciprocal space about this mean background, and integrating
over the Brillouin zone yields the density of states. Similarly,
in Eq. �43�, the first two terms represent the average of the
electronic states over a NLCPA reciprocal space tile; the k
dependent third term then fulfills a role similar to that in the
CPA case, and describes the detailed form of the electronic
structure within a reciprocal space tile. Integrating over a
tile, we obtain the coarse-grained average spectral function
presented earlier in Eq. �22�, i.e., the density of states of a
particular tile. We can see therefore, that the expression in
Eq. �43� is indeed the correct generalization of the single-site
result of Faulkner and Stocks36 for the NLCPA spectral func-
tion at an arbitrary k point. We should note however, that the

�Ĝ� �Kn� term in �̂�Kn ; k̃� is constant over a given reciprocal
space tile; this may lead to discontinuities at tile boundaries,
which may be removed by a suitable smoothing scheme.

A. Application to CuNi solid solution

To illustrate calculation of the spectral function along spe-
cific lines in reciprocal space, in this section we examine the
fcc Cu77Ni23 solid solution with a 6.76 Å lattice constant. As

in the CuZn calculations described previously, self-consistent
KKR-CPA potentials are used. A four-site cluster is used, and
short-range order is introduced into the calculation analo-
gously to the CuZn case study.

The following motivates our choice of CuNi: it has a dif-
ferent lattice structure to CuZn, being fcc, and therefore al-
lows us to illustrate the efficacy of the NLCPA when applied
to systems with larger clusters; as a classic example of a
binary alloy a wealth of theoretical and experimental
work2,33,34,41–44 exists discussing its electronic structure with
which we can compare results; and lastly, although a split-
band system,43 the electronic structure is sufficiently differ-
ent from that of CuZn to provide a further test of the formal-
ism presented.

We begin by examining the density of states, which is
illustrated in Fig. 8. The Cu77Ni23 solid solution is widely
known to be in the split-band regime,43 although in contrast
to the CuZn system, the Cu and Ni features are less widely
separated in energy. Indeed, Fig. 8 shows the resulting Ni
impurity bands that occur at an energy of just less than
0.6 Ry, which in the CPA case, are visible as a shoulder. The
mass of spectral features observed in the energy range of
approximately 0.2–0.5 Ry arise from the Cu d bands. Note
that the NLCPA four-site cluster calculation reproduces, in
the main, the CPA density of states �DOS� to a high degree of
agreement. It is interesting however, to note that the nonlocal
corrections to the electronic propagation result in a more
distinct Ni impurity band occurring, even in the absence of
SRO. This is in agreement with the experimental results of
Seib and Spicer,34 and suggests that incorporation of nonlo-
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cal effects is essential to correctly describe this spectral fea-
ture.

If we switch on the effects of SRO by increasing the value
of the SRO parameter to 0.03, then this models the experi-
mentally known tendency of CuNi systems to cluster.34 This
clustering is accompanied by a transfer of spectral weight
from the low energy Cu feature at around 0.35 Ry and the Ni
impurity band to the Cu d-band peaks. Indeed, we note that a
small feature is observed at around 0.3 Ry. The transfer of
spectral weight, and in particular, the reduction in the DOS at
the Ni impurity bands, may be understood if one considers
that upon clustering, the electronic structure will approach
that of the pure Cu and Ni systems.

Having examined the DOS, we now present an example
of the spectral function along the direction �0,0,0� to
�0,0.5,1� �the W point� at 0.353 Ry in Fig. 9. We choose this
energy because the DOS plot indicates a large alteration in
spectral weight occurring at this energy upon increase of
SRO. The CPA and NLCPA �no SRO� results are similar,
although visible discrepancies indicate the effects of nonlo-
cal scattering corrections.

The presence of SRO can be seen to result in the spectral
features losing weight, accompanied by an increase in the

separation of the peaks. This reflects an increase in band
dispersion, and is to be expected, given that the clustering
regime results in an atom being preferentially surrounded by
like neighbors. The increased overlap between neighboring
sites accompanying this then leads to band broadening as
observed.

VI. CONCLUSIONS

In this paper we have demonstrated how the KKR-
NLCPA leads naturally to a coarse-grained average of the
spectral function over a reciprocal space tile, and have pre-
sented a formalism that allows the calculation of a Bloch
spectral function at any point in reciprocal space within the
KKR-NLCPA framework. This spectral function is fully
causal, and allows the effects of short-range order upon the
electronic structure of random alloys to be investigated. We
have illustrated the efficacy of the formalism by examining
the electronic structure of the bcc Cu50Zn50 and the fcc
Cu77Ni23 solid solutions.

The spectral function offers information on the electronic
structure in addition to that contained in the density of states,
whilst a knowledge of the reciprocal space distribution of the
electronic states allows contact to be made with experimental
measurements through such techniques as positron annihila-
tion and photoemission; this potentially allows the use of
such techniques as probes of the level of SRO present in
sample materials, which has important technological impli-
cations.

It is hoped that the work presented here can form the basis
of an investigation into the effects of SRO upon the Fermi
surface of transition metal alloys. Further, it is our intention
to extend the NLCPA formalism to allow investigation of the
role of SRO in itinerant metallic magnets.
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APPENDIX: RESTRICTED AVERAGES IN NLCPA

In calculating the spectral function, we need to calculate
restricted averages of the form ��̂IJ���;�:��;��, where sites I
and J� lies in different clusters. In an earlier section, it was
asserted that these averages may be given by

��LL�
IJ� ��;�:��;�� = �

J,I�

DIJ
†�;��̂JI�DI�J�

��;��. �A1�

In order to justify this, we begin by considering a general
configuration of scatterers, for which we can write that

�
k

�tk
−1�ik − G�Rik���kj = �ij , �A2�

where G�Rik� is the free electron Green’s function. Expand-
ing about the NLCPA medium yields

FIG. 8. CuNi solid solution density of states

FIG. 9. Spectral function for disordered CuNi solid solution
along the direction �0,0,0� to �0,0.5,1.0� at 0.353 Ry.
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�
k

��tk
−1 − t̂−1��ik + �Ĝ�Rik� + t̂−1 − �Ĝ�Rik� − G�Rik���kj = �ij

�A3�

or,

�
k

���̂−1�ik + �tk
−1�ik + �Ĝ�Rik���kj = �ij , �A4�

where

�tk
−1 = tk

−1 − t̂−1. �A5�

After some simple algebra, this may be written as follows:

�ij = �̂ij − �
k,l

�̂ik��tk
−1�kl + �Ĝ�Rkl���lj . �A6�

In order to find the average of �ij, we now make an ap-
proximation: in the above double summation, the index k is
taken to be summed over a set of NLCPA cluster sites about
site i, whilst the index l is similarly summed, but over a
separate set of cluster sites about j. That is, we consider
fluctuations about the NLCPA medium over a cluster extent,
and treat the clusters independently. This is the NLCPA clus-
ter generalization of the single-site result obtained by
Faulkner and Stocks in the context of the CPA.36 If now we
consider these two clusters, then we can write, upon averag-
ing, that

��IJ���,�;��,�� � �̂IJ� − �
JK

�̂IJ
„�tJ

−1��,���JK + �Ĝ�RJK�…

���KJ���,�;��,�� − �
K�L�

�̂IK�
„�tK�

−1���,����K�L�

+ �Ĝ�RK�L��…��
L�J����,��, �A7�

and

��L�J����,�� � �̂L�J� − �
M�,N�

�̂L�M�
„�tM�

−1 ���,����M�N�

+ �Ĝ�RM�N��…��
N�J����,�� �A8�

where I ,J, etc., lie in one cluster and primed indices denote
sites in another cluster.

Recalling the definition of the matrix M� in Eq. �30�, and
recalling that the matrix D� is the inverse of M� , this implies

��IJ���,�;��,�� = �
K

DIK
†�;��̂KJ� − �

K

DIK
†�;��

LM

�̂KL
„�tL

−1��,���LM

+ �Ĝ�RLM�…�
N�

�̂MN�DN�J�
��;��. �A9�

Using the definition of the matrix M� , some simple manipu-
lations yield the desired result

��IJ���,�;��,�� = �
JI�

DIJ
†�;��̂JI�DI�J�

��;��. �A10�

We note further that the matrix D� satisfies the sum rule

�
�

P���DIJ
�;� = �IJ �A11�

which is an alternative expression of the NLCPA condition in
Eq. �14�. Using this, we can write

�
�,��

P���P�����
JI�

DIJ
†�;��̂JI�DI�J�

��;�� = �̂IJ� �A12�

which is an expression for the effective medium path scat-
tering operator connecting sites in different NLCPA clusters.
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